Ruthenium-Catalyzed γ-Carbolinium Ion Formation from Aryl Azides; Synthesis of Dimebolin

ORGANIC **LETTERS** 2011 Vol. 13, No. 10 2726–2729

Huijun Dong, Regina T. Latka, and Tom G. Driver*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

tgd@uic.edu

Received March 29, 2011

A range of γ -carbolines were produced stereoselectively from ruthenium(III)-catalyzed reactions of 3-pyridyl substituted aryl azides. Other catalysts and conditions were neither as selective nor as high-yielding. This method was used to synthesize dimebolin in a concise and efficient manner.

The synthesis of N-heterocycles through the formation of $C-N$ bonds from $C-H$ bonds improves the synthetic efficiency of the synthesis of these medicinally important molecules by eliminating functional group manipulation.^{1,2} β - β ⁻⁵ and γ -carbolines⁶ are particularly attractive targets for the development of $C-H$ bond functionalization methods because they constitute the core of many biologically active compounds.7 Dimebolin (aka latrepiridine)⁸ is a *γ*-tetrahydrocarboline that was under

⁽¹⁾ For reviews, see: (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (b) Du Bois, J. Chemtracts 2005, 18, 1. (c) Agarwal, S.; Cämmerer, S.; Filali, S.; Fröhner, W.; Knöll, J.; Krahl, M. P.; Reddy, K. R.; Knölker, H.-J. Curr. Org. Chem. 2005, 9, 1601. (d) Godula, K.; Sames, D. Science 2006, 312, 67. (e) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (f) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (g) Knölker, H.-J. Chem. Lett. 2009, 38, 8. (h) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (i) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.

⁽²⁾ For recent, leading reports, see: (a) (Rh) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127, 14198. (b) (Pd) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (c) (Cu) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (d) (Pd) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (e) (Ag) Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058. (f) (Rh) Fukumoto, Y.; Kinashi, F.; Kawahara, T.; Chatani, N. Org. Lett. 2006, 8, 4641. (g) (Rh) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220. (h) (Pd) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (i) Gruner, K. K.; Knölker, H.-J. Org. Biomol. Chem. 2008, 6, 3902. (j) Lu, H.; Tao, J.; Jones, J. E.; Wojtas, L.; Zhang, X. P. Org. Lett. 2010, 12, 1248. (k) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.

^{(3) (}a) Czarnocki, Z.; Siwicka, A.; Szawkalo, J. Curr. Org. Synth.
2005, 2, 301. (b) Youn, S. W. Org. Prep. Proc. Int. 2006, 38, 505. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (d) Edwankar, C. R.; Edwankar, R. V.; Namjoshi, O. A.; Rallapappi, S. K.; Yang, J.; Cook,
J. M. *Curr. Opin. Drug Discuss. Dev.* 2009, 12, 752. (e) Alekseyev, R. S.; Kurkin, A. V.; Yurovskaya, M. A. Chem. Heterocycl. Compd. 2009, 45, 889. (f) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.

⁽⁴⁾ Recent Pictet-Spengler reports: (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558. (b) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086. (c) Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.; Hiemstra, H.
Angew. Chem., Int. Ed. **2007**, 46, 7485. (d) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887.

⁽⁵⁾ β-Carbolines (non-Pictet-Spengler), see: (a) Bondzić, B. P.; Eilbracht, P. Org. Lett. 2008, 10, 3433. (b) Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485. (c) England, D. E.; Padwa, P. Org. Lett. 2008, 8, 3631. (d) Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 1979.

⁽⁶⁾ γ-Carbolines: (a) Zhang, H.; Larock, R. C. Org. Lett. 2001, 3, 3083. (b) Zhang, H.; Larock, R. C. J. Org. Chem. 2002, 67, 7048. (c) Chiba, S.; Xu, Y.-J.; Wang, Y.-F. J. Am. Chem. Soc. 2009, 131, 12886. (d) Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 12, 1540.

^{(7) (}a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797. (b) Czarwinski, K. M.; Cook, J. M. Advances in Heterocyclic Natural Products Synthesis; Pearson, W., Ed.; JAI Press: Greenwich, CT, 1996; Vol. III, p 217. (c) Maresh, J. J.; Giddings, L.-A.; Friedrich, A.; Loris, E. A.; Panjikar, S.; Trout, B. L.; Stockigt, J.; Peters, B.; O'Connor, S. E. J. Am. Chem. Soc. 2007, 130, 710. (d) Luk, L. Y. P.; Bunn, S.; Liscombe, L. K.; Facchini, P. J.; Tanner, M. E. Biochemistry 2007, 46, 10153 and references therein.

⁽⁸⁾ Shadurski, K. S.; Danusevich, I. K.; Kost, A. N.; Vinogradova E. V. U.S. Patent No. 1138164; Chem. Abstr. 1985, 102, 190810.

intense scrutiny because it showed promising activity for the treatment of mild to moderate cases of Alzheimer's⁹ and Huntington's¹⁰ disease.¹¹ Dimebolin was originally synthesized using the Fischer-indole reaction.⁸ Although efficient for constructing dimebolin, this reaction is not regioselective and as a consequence this approach limits the substitution pattern on the aryl portion of the γ -tetrahydrocarboline.

Scheme 1. Stereoselective Synthesis of γ -Carbolinium Ions from Aryl Azides

Synthesizing this N-heterocycle through the construction of the $C-N$ bond from aryl azide 2 would address this limitation but presents a particular challenge because the metal intermediate must distinguish between C2 and C4. To underscore this challenge, the thermolysis of 2 provided a 1:1 mixture of 3 and 4. Herein, we describe our efforts that culminated in a general method to access γ -carbolinium ions as single isomers from aryl azides (Scheme 1). This method enables synthesis of dimebolin from commercial starting materials in five flasks with only three purifications.

Toward our goal, transition metal complexes known to promote $C-N$ bond formation from aryl azides were screened (Table 1). Although rhodium carboxylate complexes were found to be efficient catalysts,12 they promoted

the formation of the undesired regioisomer with modest selectivity (entries $1-3$). Other metal complexes such as $[({\rm cod})I_{\rm r}({\rm OMe})]_2$,¹³ ${\rm ZnI_2}$,¹⁴ and ${\rm FeBr_2}^{15}$ were found to be unreactive (entries 4–6). Selective γ -carbolinium formation was realized with ruthenium complexes.¹⁶ In dimethox-

Table 1. Development of Optimal Conditions for γ-Carbolinium Ion Formation from Aryl Azides

Me	MX_n (5 mol %) solvent				
entry	\mathbf{MX}_n	solvent		temp (°C) yield $(\%)^a$	3:4
1^b	$Rh_2(O_2C_4F_7)_4$	PhMe	90	> 95	25:75
2^b	$Rh_2(O_2C_8H_{15})_4$	DCE	80	> 95	20:80
3^b	$Rh_2(esp)_2$	DCE	60	>95	18:82
4^b	$[(cod)Ir(OMe]_2]$	i -PrCO ₂ Me	80	7	100:0
5^b	ZnI2	CH_2Cl_2	40	Ω	n.a.
6^b	FeBr ₂	PhMe	80	Ω	n.a.
7	RuCl ₃	DME	80	66	100:0
8	$RuCl_3 \cdot nH_2O$	i-PrCO ₂ Me	80	> 95	100:0
9	RuCl ₃	i-PrCO ₂ Me	80	17	100:0
10 ^c	RuCl ₃	i-PrCO ₂ Me	80	70	100:0
11	(cod)RuCl ₂	i-PrCO ₂ Me	80	23	100:0
12	Ru(TPFPP)CO	i-PrCO ₂ Me	80	48	100:0

^{*a*} As determined using ¹H NMR spectroscopy using CH₂Br₂ as an internal standard. ^b 100 wt % of 4 Å MS added. ^c 10 mol % of H₂O was added.

yethane, anhydrous RuCl3^{16a} partially converted aryl azide 2 into carbolinium 3. Additional screening of reaction conditions afforded the optimal conditions: 5 mol % of $RuCl₃·nH₂O$ in isopropyl acetate provided 3 as the only product (entry 8). Only partial consumption of the aryl azide was observed in isopropyl acetate in the absence of water (entry 9). The reaction could be restored in isopropyl acetate if 10 mol % of water was added to the anhydrous

 (16) For leading examples of Ru-catalyzed N-atom transfer reactions, see: (a) Shou, W. G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847. (b) Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Casati, N.; Macchi, P.; Cenini, S. Chem. Commun. 2009, 3952. (c) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825. (d) Kawabata, H.; Omura, K.; Uchida, T.; Katsuki, T. Chem.—
Asian J. 2007, 2, 248. (e) Leung, S. K.-Y.; Tsui, W.-M.; Huang, J.-S.; Che, C.-M.; Liang, J.-L.; Zhu, N. J. Am. Chem. Soc. 2005, 127, 16629.

(17) Optimized General Procedure for γ-Tetrahydrocarboline Formation. To a mixture of pyridinium $2a$ (0.187 g, 0.5 mmol, 1.0 equiv) and RuCl₃ · nH₂O (0.005 g, 0.025 mmol, 0.05 equiv) was added 5 mL of isopropyl acetate (0.1 M). The resulting mixture was stirred at 80 °C for 15 h. The heterogeneous mixture was then filtered through Celite, and the filtrate was concentrated in vacuo. The resulting crude carbolinium ion $3a$ (0.173 g) and 0.076 g of NaBH₄ (2.0 mmol) were dissolved in 30 mL of a 7:3 mixture of methanol and water. After 15 min, the reaction mixture was warmed to 100 °C. After 10 min, the reaction was cooled to room temperature. The mixture was diluted with 10 mL of CH_2Cl_2 , and the resulting mixture was washed with water. The organic phase was dried over $\mathrm{Na}_2\mathrm{SO}_4$, filtered, and concentrated. Purification using MPLC afforded tetrahydocarboline 5a.

⁽⁹⁾ Compare (a) Okun, I.; Tkachenko, S. E.; Khavat, A.; Mitkin, O.; Kazey, V.; Ivachtchenko, A. V. Curr. Alzheimer Res. 2010, 7, 97. (b) Steele, J. W.; Kim, S. H.; Cirrito, J. R.; Verges, D. K.; Restivo, R. L.; Westaway, D.; Fraser, P.; Hyslop, P. S.; Sano, M.; Bezprozvanny, I.; Ehrlich, M. E.; Holtzman, D. M.; Gandy, S. *Mol. Neurodegener*. 2009, 4, 51. (c) Doody, R. S.; Gavrilova, S. I.; Sano, M.; Thomas, R. G.; Aisen, P. S.; Bachurin, B. O.; Seely, L.; Hung, D. Lancet 2008, 372, 207. (d) Ivachtchenko, I. V.; Frolov, E. B.; Mitkin, O. D.; Kysil, V. M.; Khvat, A. V.; Okun, I. M.; Tkachenko, S. E. Bioorg. Med. Chem. Lett. 2009, 19, 3183.

⁽¹⁰⁾ Compare (a) Kieburtz, K.; McDermott, M. P.; Voss, T. S.; Corey-Bloom, J.; Deuel, L. M.; Dorsey, E. R.; Factor, S.; Geschwind, M. D.; Hodgeman, K.; Kayson, E.; Noonberg, S.; Pourfar, M.; Rabinowitz, K.; Ravina, B.; Sanchez-Ramos, J.; Seely, L.; Walker, F.; Feigin, A. and The Dimebon in Subjects With Huntington Disease Investigators of the Huntington Study Group. Arch. Neurol. 2010, 67, 154. (b) Sabbagh, M. N; Shill, H. A. Curr. Opin. Invest. Drugs 2010, 11, 80. (c) Wu, J.; Li, Q.; Bezprozvanny, I. Mol. Neurodegener. 2008, 3, 15.

^{(11) (}a) Pollack, A. Antihistamine Shows Promise in Treating Alzheimer's. New York Times June 11, 2007. (b) Hopkins, C. R. ACS Chem. Neurosci. 2010, 1, 587.

^{(12) (}a) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74, 6442. (b) Stokes, B. J.; Jovanović, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225. (c) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056. (d) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.

⁽¹³⁾ Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett. 2009, 11, 3598.

⁽¹⁴⁾ Dong, H.; Shen, M.; Redford, J. E.; Stokes, B. J.; Pumphrey, A. L.; Driver, T. G. Org. Lett. 2007, 9, 5191.

⁽¹⁵⁾ Shen, M.; Driver, T. G. Org. Lett. 2008, 10, 3367.

Table 2. Scope and Limitations of Ru(III)-Catalyzed γ -Carboline Formation

 $RuCl₃·H₂O$ $(5 \text{ mol } \%$

^a Yield determined using ¹H NMR spectroscopy. ^b Yield of γ -tetrahydrocarboline 5 from aryl azide 2 after chromatography over SiO₂. ^cOther catalysts were also ineffective. ^d Use of $Rh_2(\text{esp})_2$ (5 mol %). ^e Mesitylene, 110 °C. ^f NaBH₄ reduction afforded a complex mixture.

 $RuCl₃$ (entry 10). $Ru(II)$ complexes^{16e} were examined and found to be poorer catalysts than $RuCl₃·nH₂O$ (entries 11 and 12). Consequently, we conclude that Ru(III) is the requisite oxidation state for the catalytic cycle.¹⁷

A range of 3-pyridyl substituted aryl azides were examined to determine the scope and limitations of ruthenium- (III)-catalyzed γ -carbolinium formation (Table 2). The resulting ions 3 were reduced with NaBH₄ to obtain γ-carbolines 5 that could be purified by $SiO₂$ chromatography.18 The reaction tolerated a variety of substituents on the pyridine nitrogen including allyl and benzyl groups without any loss of regioselectivity (entries $1-4$). No reaction was observed with pyridine N-oxide 3d or o -methyl substituted 3e, revealing the sensitivity of ruthenium catalyst to strong electron-donating groups and the steric environment around the aryl azide.¹⁹ In contrast, the reaction was insensitive to the electronic nature of the aryl azide. Substrates bearing either electron-donating or electron-withdrawing substituents produced single isomers of carbolines upon exposure to $RuCl₃·nH₂O$ (entries 6–10). While substitution on the pyridinium ion attenuated the yield, the selectivity of the reaction remained high. Our reaction enables the regioselective synthesis of γ -tetrahydrocarbolines (e.g., 5f, 5k, and 5l), which cannot be made selectively using the Fischer-indole reaction.

To determine if $RuCl_3 \cdot nH_2O$ could catalyze the formation of β-carbolines, aryl azide 6 was screened (eq 1). In contrast to 3-pyridinium ions, no product was observed using 5 mol $\%$ of RuCl₃ hydrate. For this class of substrates, rhodium carboxylate complexes proved more effective catalysts: exposure of 6 to 5 mol % of $Rh_2(\text{esp})_2$ afforded tryptoline 8 after NaBH₄ reduction.

The synthetic efficiency and generality of our new method was demonstrated in a concise, stereoselective

⁽¹⁸⁾ Elliott, I. W. J. Heterocycl. Chem. 1966, 3, 361.

⁽¹⁹⁾ Rh₂(esp)₂ (5 mol %) efficiently converted biaryl azide 3e into *γ*carbolinium ion 4e. Elucidating the unique regioselectivity exhibited by this substrate is the basis of ongoing mechanistic experiments.

Scheme 2. Synthesis of Dimebolin

synthesis of dimebolin (Scheme 2). Palladium-catalyzed Suzuki cross-coupling of o-bromoanilines provided biaryl 9a in quantitative yield.^{12a,b} Azidation²⁰ followed by alkylation of the pyridine nitrogen with methyl triflate produced 2a, which was submitted to our ruthenium-catalyzed

(24) For reduction, see: (a) Wattanasin, S.; Kathawala, F. G. Synth. Commun. 1989, 19, 2659. (b) Flitsch, W.; Niehoff, A. Liebigs Ann. Chem. 1989, 239.

amination reaction without purification. Analysis of the reaction mixture using ¹H NMR spectroscopy indicated that carbolinium ion 3a was formed in 91% yield. Deprotonation of the carbolinium ion followed by alkylation with 12 furnished the requisite pyridine side chain.²¹ Introduction of this moiety by alternative methods, such as transition-metal-catalyzed vinylation, 22 reductive amination, $2^{3,24}$ or alkylation²⁵ of carboline 5a were not successful. Sodium borohydride reduction of 10a proceeded smoothly to produce dimebolin in 48% from 9a. This six-step synthesis required only three purifications to produce dimebolin.

In conclusion, we have demonstrated that $RuCl₃·nH₂O$ catalyzes the stereoselective formation of γ -carbolines from ortho-substituted aryl azides. A six-step synthesis of dimebolin validated the synthetic efficiency of our method. Future experiments will be aimed at examining the differences between the mechanism of ruthenium- and rhodiumcatalyzed $C-N$ bond formation of pyridinium ions as well as developing methods to stereoselectively functionalize the resulting carbolinium ion.

Acknowledgment. We are grateful to the National Institutes of Health NIGMS (R01GM084945) and the University of Illinois at Chicago for their generous support. We also thank Prof. L. Anderson (UIC) and Prof. D. Wardrop (UIC) for insightful discussions and Mr. Furong Sun (UIUC) for mass spectrometry data.

Supporting Information Available. Complete experimental procedures and spectroscopic and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

(25) Compare Khorana, N.; Purohit, A.; Herrick-Davis, K.; Teitler, M.; Glennon, R. A. Bioorg. Med. Chem. 2003, 11, 717.

⁽²⁰⁾ Smith, P. A. S.; Hall, J. H. J. Am. Chem. Soc. 1962, 84, 480.

⁽²¹⁾ Smolyar, N. N.; Volchkov, A. S.; Yutilov, Y. M. Pharmaceut. Chem. J. 2001, 35, 514.

 (22) (a) Cu-catalyzed: Liao, Q.; Wang, Y.; Zhang, L.; Xi, C. J. Org. Chem. 2009, 74, 6371. (b) Pd-catalyzed: Lebedev, A. Y.; Izmer, V. V.; Kazyul'kin, D. N.; Beletskaya, I. P.; Voskoboynikov, A. Z. Org. Lett. 2002, 4, 623.

⁽²³⁾ For acylation, see: (a) Ottoni, O.; Cruz, R.; Alves, R. Tetrahedron 1998, 54, 13915. (b) Giri, V. S.; Maiti, B. C.; Pakrashi, S. C. Heterocycles 1985, 21, 71.